Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of ballistic electron transport on efficiency of InGaN based LEDs

Identifieur interne : 002C92 ( Main/Repository ); précédent : 002C91; suivant : 002C93

Impact of ballistic electron transport on efficiency of InGaN based LEDs

Auteurs : RBID : Pascal:11-0386329

Descripteurs français

English descriptors

Abstract

InGaN light emitting diodes (LEDs), which have become key components of the lighting technology owing to their improved power conversion efficiencies and brightness, still suffer from efficiency degradation at high injection levels. Experiments showing sizeable impact of the barrier height provided by an electron blocking layer (EBL) or the electron cooling layer prior to electron injection into the active region strongly suggest that the electron overflow resulting from ballistic and quasi-ballistic transport is the major cause of efficiency loss with increasing injection. Our previous report using a first order simple overflow model based on hot electrons and constant LO phonon scattering rates describes well the experimental observations of electron spillover and the associated efficiency degradation in both nonpolar m-plane and polar c-plane LEDs with different barrier height EBLs and electron injection layers. LEDs without EBLs show three to five times lower efficiencies than those with Al0.15Ga0.85N EBLs due to significant electron overflow to the p-type region in the former. For effective means of thermalization in the active region within their residence time and possibly longitudinal optical phonon lifetime, the electrons were cooled prior to their injection via a staircase electron injector, i.e. an InGaN staircase structure with step-wise increased In composition. The investigated m-plane and c-plane LEDs with incorporation of staircase electron injector show comparable electroluminescence performance regardless of the status of EBL. This paper discusses hot electron effects on efficiency loss, means to cool the electrons prior to injection.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0386329

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Impact of ballistic electron transport on efficiency of InGaN based LEDs</title>
<author>
<name sortKey="Zhang, F" uniqKey="Zhang F">F. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, S" uniqKey="Liu S">S. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Okur, S" uniqKey="Okur S">S. Okur</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Avrutin, V" uniqKey="Avrutin V">V. Avrutin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ozg R, " uniqKey="Ozg R "> Özg R</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morkoc, H" uniqKey="Morkoc H">H. Morkoc</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Richmond, VA23284</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matulionis, A" uniqKey="Matulionis A">A. Matulionis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Lituanie</country>
<wicri:noRegion>01108 Vilnius</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kisin, M" uniqKey="Kisin M">M. Kisin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Ostendo Technologies</s1>
<s2>Carlsbed, CA 92011</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Ostendo Technologies</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0386329</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0386329 INIST</idno>
<idno type="RBID">Pascal:11-0386329</idno>
<idno type="wicri:Area/Main/Corpus">002A90</idno>
<idno type="wicri:Area/Main/Repository">002C92</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active region</term>
<term>Ballistic transport</term>
<term>Barrier height</term>
<term>Brightness</term>
<term>Conversion rate</term>
<term>Cooling system</term>
<term>Damaging</term>
<term>Durability</term>
<term>Electroluminescence</term>
<term>Electron blocking layer</term>
<term>Electron injection</term>
<term>Electron injection layer</term>
<term>First order</term>
<term>Gallium nitride</term>
<term>Hot electron</term>
<term>Indium nitride</term>
<term>Light emitting diode</term>
<term>Optical phonon</term>
<term>Performance evaluation</term>
<term>Phonon scattering</term>
<term>Ternary compound</term>
<term>p type semiconductor</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transport balistique</term>
<term>Evaluation performance</term>
<term>Diode électroluminescente</term>
<term>Taux conversion</term>
<term>Brillance</term>
<term>Endommagement</term>
<term>Hauteur barrière</term>
<term>Système refroidissement</term>
<term>Injection électron</term>
<term>Région active</term>
<term>Ordre 1</term>
<term>Electron chaud</term>
<term>Diffusion phonon</term>
<term>Phonon optique</term>
<term>Durabilité</term>
<term>Electroluminescence</term>
<term>Composé ternaire</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Semiconducteur type p</term>
<term>InGaN</term>
<term>Couche de blocage d'électrons</term>
<term>Couche d'injection d'électrons</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">InGaN light emitting diodes (LEDs), which have become key components of the lighting technology owing to their improved power conversion efficiencies and brightness, still suffer from efficiency degradation at high injection levels. Experiments showing sizeable impact of the barrier height provided by an electron blocking layer (EBL) or the electron cooling layer prior to electron injection into the active region strongly suggest that the electron overflow resulting from ballistic and quasi-ballistic transport is the major cause of efficiency loss with increasing injection. Our previous report using a first order simple overflow model based on hot electrons and constant LO phonon scattering rates describes well the experimental observations of electron spillover and the associated efficiency degradation in both nonpolar m-plane and polar c-plane LEDs with different barrier height EBLs and electron injection layers. LEDs without EBLs show three to five times lower efficiencies than those with Al
<sub>0.15</sub>
Ga
<sub>0.85</sub>
N EBLs due to significant electron overflow to the p-type region in the former. For effective means of thermalization in the active region within their residence time and possibly longitudinal optical phonon lifetime, the electrons were cooled prior to their injection via a staircase electron injector, i.e. an InGaN staircase structure with step-wise increased In composition. The investigated m-plane and c-plane LEDs with incorporation of staircase electron injector show comparable electroluminescence performance regardless of the status of EBL. This paper discusses hot electron effects on efficiency loss, means to cool the electrons prior to injection.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7939</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Impact of ballistic electron transport on efficiency of InGaN based LEDs</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Gallium nitride materials and devices VI : 24-27 January 2011, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHANG (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (X.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIU (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OKUR (S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>AVRUTIN (V.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ÖZGÜR (Ü.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MORKOC (H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MATULIONIS (A.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KISIN (M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CHYI (Jen-Inn)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, Virginia Commonwealth University</s1>
<s2>Richmond, VA23284</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11</s1>
<s2>01108 Vilnius</s2>
<s3>LTU</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Ostendo Technologies</s1>
<s2>Carlsbed, CA 92011</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>793917.1-793917.6</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8476-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174740250240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0386329</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>InGaN light emitting diodes (LEDs), which have become key components of the lighting technology owing to their improved power conversion efficiencies and brightness, still suffer from efficiency degradation at high injection levels. Experiments showing sizeable impact of the barrier height provided by an electron blocking layer (EBL) or the electron cooling layer prior to electron injection into the active region strongly suggest that the electron overflow resulting from ballistic and quasi-ballistic transport is the major cause of efficiency loss with increasing injection. Our previous report using a first order simple overflow model based on hot electrons and constant LO phonon scattering rates describes well the experimental observations of electron spillover and the associated efficiency degradation in both nonpolar m-plane and polar c-plane LEDs with different barrier height EBLs and electron injection layers. LEDs without EBLs show three to five times lower efficiencies than those with Al
<sub>0.15</sub>
Ga
<sub>0.85</sub>
N EBLs due to significant electron overflow to the p-type region in the former. For effective means of thermalization in the active region within their residence time and possibly longitudinal optical phonon lifetime, the electrons were cooled prior to their injection via a staircase electron injector, i.e. an InGaN staircase structure with step-wise increased In composition. The investigated m-plane and c-plane LEDs with incorporation of staircase electron injector show comparable electroluminescence performance regardless of the status of EBL. This paper discusses hot electron effects on efficiency loss, means to cool the electrons prior to injection.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transport balistique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ballistic transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transporte balístico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Brillance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Brightness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Brillantez</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Hauteur barrière</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Barrier height</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Altura barrera</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système refroidissement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Cooling system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema enfriamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Injection électron</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Electron injection</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Inyección electrón</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Région active</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Active region</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Región activa</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>First order</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Electron chaud</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Hot electron</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Electrón caliente</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diffusion phonon</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Phonon scattering</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Difusión fonón</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phonon optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Optical phonon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Fonón óptico</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Durabilité</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Durability</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Durabilidad</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Electroluminescence</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electroluminescence</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Electroluminiscencia</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>p type semiconductor</s0>
<s5>25</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Semiconductor tipo p</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Couche de blocage d'électrons</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Electron blocking layer</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Couche d'injection d'électrons</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Electron injection layer</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>17</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>17</s5>
</fC07>
<fN21>
<s1>262</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Gallium nitride materials and devices</s1>
<s2>06</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002C92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0386329
   |texte=   Impact of ballistic electron transport on efficiency of InGaN based LEDs
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024